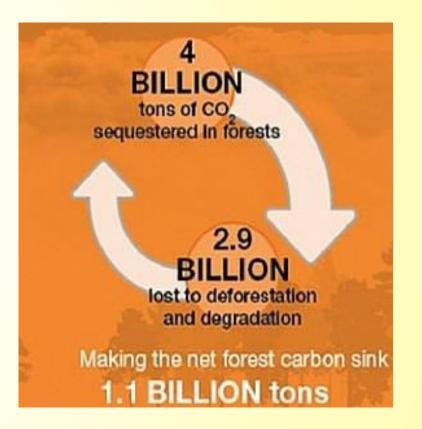
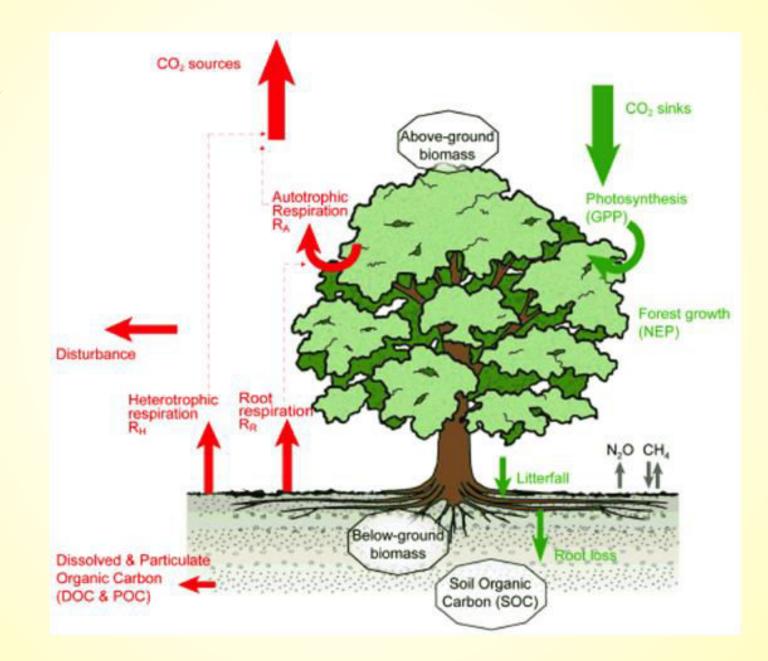
ROLE OF FORESTS IN MITIGATION OF CLIMATE CHANGE

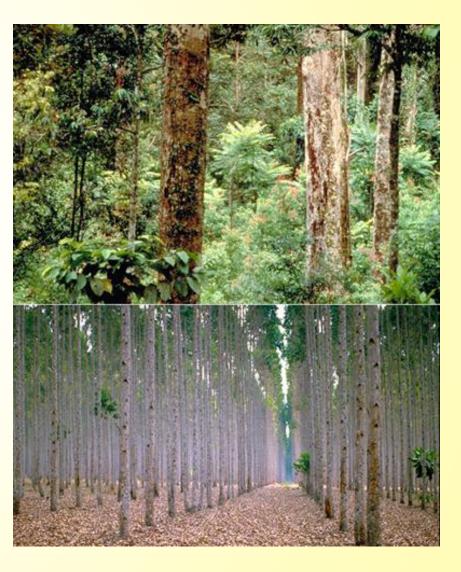

GROUP 1 (ROLL NUMBERS 1501 TO 1510)


Forest Carbon cycle

- Comparison vis-à-vis other sectors of mitigation
- Natural forests vs Tree plantations
- Actively managed forests vs Static forests
- **Key Forest Mitigation strategies**
- How to facilitate the maximum exploitation of this potential

Forest Carbon cycle

- Photosynthesis binds CO2 and stores it in form of complex carbohydrates
- Mainly in three pools
 - Above the ground biomass
 - Below the ground biomass
 - Soil organic carbon
- The important role that forests have in addressing climate change was formally recognized in the Paris Agreement by specific inclusion of REDD+



Benefits over other sectors of mitigation

- Ecosystem services e.g.
 - soil conservation
 - water-cycle enhancement
- Wildlife food-web
- Timber & Energy from biomass
- Employment to local communities

Natural Forest vs Tree Plantations

- Primary forests store 30-70% more carbon than commercially logged forests and plantation forests
- The biodiversity of natural forests provide forest ecosystems with resilience and adaptive capacity, resulting in more stable carbon stocks
- Soil carbon component is more in Natural forests

Actively managed vs Static forests

- Faster growth so more speed of carbon sequestration
 - But the rotation period is important
- Timber benefits Use of wood products is Carbon negative
 - Biomass energy from residue
- In static, more inflammable objects- more fires

Key Forest Mitigation strategies

	Mitigation Activities	Type of Impact	Timing of Impact	Timing of Cost
1A	Increase forest area (e.g. new forests)	4	\int	2
1B	Maintain forest area (e.g. prevent deforestation, LUC)	*	2	2
2A	Increase site-level C density (e.g. intensive management, fertilize)	\bigcirc	\int	2
2B	Maintain site-level C density (e.g. avoid degradation)	*	2	2
3A	Increase landscape-scale C stocks (e.g. SFM, agriculture, etc.)	4	\int	2
3B	Maintain landscape-scale C stocks (e.g. suppress disturbances)	*	2	
4A	Increase off-site C in products (but must also meet 1B, 2B and 3B)	4		7
4B	Increase bioenergy and substitution (but must also meet 1B, 2B and 3B)	*		

Type of Impact	Timing (change in Carbon over time)	Timing of cost (dollars (\$) over time)	
Enhance sink	Delayed	Delayed	
Reduce source	Immediate	Up-front	
	Sustained or	On-going	

How to facilitate the maximum exploitation of this potential

- We need accounting systems that recognize such forest management actions and policy and rule settings that foster primary forest protection, restoration of degraded natural forests and re-forestation of natural forests in that order
- Working Plans must include carbon sequestration objective
 - Selection system
 - Longer rotation periods
- Increasing the stand-level carbon density (tonnes of carbon per ha) through the reduction of forest degradation and through planting, site preparation and tree improvement

- Increasing off-site carbon stocks in wood products and enhancing product and fuel substitution using forest-derived biomass to substitute products with high fossil fuel requirements
- Better Pest and Fire management and Forest protection to reduce leakages
- Agro-forestry and Urban forestry provides an example of a set of innovative practices designed to enhance overall productivity, to increase carbon sequestration

Adaptive management e.g.

- Shifting to species more productive under the new climatic conditions e.g. seabuckthorn
- Increase biodiversity in plantations by multi-species plantations
- Use of stocks from a range of provenances
- Ecological corridors create opportunities for migration of flora and fauna, which facilitates adaptation to changing climate
- Building Institutional capacity (e.g. REDD+ Authority) as well as capacity building at ground level
- Investment in technology RD (e.g. wood impregnation)
- Framing appropriate policies
 - Reviewing blanket ban on felling
 - Wood first policy in public buildings
 - Incentives for Bio-energy

- Considerable progress has been made in technology development for implementation, monitoring and reporting of carbon benefits but barriers to technology transfer remain
- International cooperation via adequate and predictable finance (REDD+ vs CDM)
- In the long term, only integration of mitigation and adaptation strategies to promote sustainable forest management can develop our forests as resilient and efficient carbon sinks

thank you!